Rhamnosylation Reaction with a Phenyl 1-Thiorhamnoside and a Rhamnosyl Fluoride Which Have ⁴C₁ Conformation

Hidetoshi Yamada* and Tomonari Ikeda

School of Science, Kwansei Gakuin University, Uegahara, Nishinomiya 662-8501

(Received January 20, 2000; CL-000056)

Rhamnosylation reaction with a phenyl 1-thiorhamnoside and a rhamnosyl fluoride that has chair conformation with more axial substituents (${}^{4}C_{1}$) is described. Flipping of the ring conformation changed the high α -selectivity of the general rhamnosylation reaction. More β -rhamnosides were afforded under several conditions.

The *O*-rhamnosylation reactions generally show high α -selectivity.¹ Steric hindrance of the axial 2-*O*-substituent and the stereoelectronic effect cause the selectivity. We recently reported the chair conformation with more axial substituents of L-rhamnopyranose.² Flipping of the natural ring conformation of L-rhamnose was occurred by introduction of TBS ³ for the 3-OH group and TPS for the 4-OH group (1). Because both the above-mentioned reasons of the α -selectivity deeply concerned to its ring conformation, we were interested in the change of the diastereoselectivity when the 'flipped' sugars were used as rhamnosyl donors. We disclose here *O*-rhamnosyl fluoride that has ⁴C₁ conformation.⁴

Phenyl 1-thio-2-*O*-benzyl-3-*O*-TBS-4-*O*-TPS- α -L-rhamnopyranoside (2) was chosen as the glycosyl donor of our preliminary investigations. It was synthesized from an allyl rhamnoside 3² in 99% yield by treatment with PhSTMS and ZnI₂ in 1,2-dichloroethane at 50 °C for 2 h.⁵ Only the α -isomer was thermodynamically obtained, and 2 kept the ⁴C₁ conformation.¹²

Figure 1.

Reactions of **2** by NBS ⁶ were achieved with methanol, cyclohexylmethanol, and 2-propanol to give rhamnosides **4**, **5**, and **6**, respectively. Selection of solvents and size of the rhamnosyl acceptors influenced the diastereoselectivity at the anomeric position (Table 1). In dichloromethane, the α -isomer was selectively obtained when the primary alcohols were used as glycosyl donor (entries 1 and 2). In contrast, a reaction with 2-propanol showed β -selectivity (entry 3). In diethyl ether and THF, the β -isomers were preferred (entries 4 - 9). In acetonitrile, none of the case showed the β -selectivity. Increasing size of the alcohol resulted less β -isomer (entries 10 - 12). Derived rhamnosides $4\alpha\beta$, $5\alpha\beta$, and $6\alpha\beta$ kept the ${}^{4}C_{1}$ conformation.¹²

Figure 2.

 Table 1. Influence of solvent on the rhamnosylation reaction using phenyl 1-thiorhamnoside 2

Entry	y Alcohol	Solvent	Time /min	Yield ^a /%	Product	α:β ^b ratio
1	CH ₃ OH	CH ₂ Cl ₂	5	68	4	87:13
2 C	₆ H ₁₁ ČH ₂ OH	CH2Cl2	120	65	5	85:15
3	Me ₂ CHŐH	CH_2Cl_2	10	81	6	37:63
4	С́́Н₃ОН	Et ₂ O	30	73	4	45:55
5 C	6H11CH2OH	Et_2O	20	73	5	50:50
6	Me ₂ CHOH	Et_2O	60	83	6	47:53
7	С́́Н₃ОН	THF	60	64	4	37:63
8 C	₆ H ₁₁ ČH ₂ OH	THF	60	68	5	47:53
9	Me ₂ CHŐH	THF	120	63	6	49:51
10	CĦ₃OH	CH ₃ CN	5	71	4	50:50
11 C	₆ H ₁₁ ČH ₂ OH	CH ₃ CN	10	73	5	57:43
12	Me ₂ CHŐH	CH ₃ CN	10	89	6	72:28

^aIsolated yield. ^bRatio determined by HPLC with reflective index detection.

The diastereoselectivity in the ethereal solvents and acetonitrile can be understood considering the reverse anomeric effect ⁷ and nitrilium-nitrite conjugation (nitrile effect).⁸ Generally in *O*-glycosylation, the 1,2-cis- (α -) isomers are selectively obtained in ethereal solvents by the reverse anomeric effect.^{7,9} Although **2** is classified into *D*-gluco type around the reaction center, the ratio of 1,2-trans- (α -) isomer is higher than in the case of the corresponding glucosylation. The oxonium cation **8** would be more stable than **9** by the reverse anomeric effect. However, an approach of an alcohol from lower face of **8**, the reaction would be slower than the reaction of **9** by a double 1,3-diaxial repulsion due to the oxygen substituent at C-3 and the methyl group of C-6. Therefore, the reaction from the upper face of **9** became relatively increased to give the 1,2-trans- (α -) isomer.

Generally in acetonitrile, conjugation from the axial site is more stable when the glycosyl donor is *D-gluco* type to give 1,2-trans- (β -) glucosides.^{8,9} In the case with **2**, the conjugation from the axial site **9** would not be as stable as in the case with D-glucose derivatives by the double 1,3-diaxial repulsion. The ratio of the 1,2-*cis*- (β -) isomer, therefore, became relatively higher through **8** when methanol was used as a rhamnosyl acceptor (Table 1, entry 10). Bigger alcohol influenced the 1,3diaxial repulsion more than the solvent. Consequently, increasing size of the glycosyl acceptors resulted in more 1,2-*trans*- $(\alpha$ -) isomer through **9** (Table 1, entries 10-12).

Figure 3.

Reactions of the corresponding rhamnosyl fluorides showed a similar tendency. The fluoride **10** was prepared from **2** by treatment with DAST and NBS in dichloromethane at -40 °C.¹⁰ The derived **10** (77% yield) was a 69:31 mixture of α and β -isomers.¹² Separated each isomer was independently used for rhamnosylation reaction with cyclohexylmethanol under Mukaiyama's conditions¹¹ (AgClO₄, SnCl₂, 4A MS, -15 °C, 10 min) to give 5α and 5β (Table 2). Because both diastereoisomers **10** α and **10** β showed similar diastereoselectivity, the reaction passed through the same oxonium cation **7**. High α -selective reaction was observed in dichloromethane. In contrast, unusual ratio of the β -isomer was obtained in diethyl ether.

Figure 4.

 Table 2. Influence of solvent on the reaction using rhamnosyl fluoride 10 with cyclohexylmethanol

Entry	Fluoride	Solvent	Yield ^a /%	α:β ^b ratio
1	10α	CH ₂ Cl ₂	70	98:2
2	10α	CH ₃ CN	61	75:25
3	10α	Et ₂ O	84	57:43
4	10β	CH_2Cl_2	70	>99:1
5	10β	CH ₃ CN	59	84:16
6	10β	Et ₂ O	80	60:40

^aIsolated yield. ^bRatio determined by HPLC with reflective index detection.

In conclusion, during rhamnosylation reactions with rhamnosyl donors that have ${}^{4}C_{1}$ ring conformation, the conformation was maintained. The diastereoselectivity at the anomeric center was different from the case with rhamnosyl donors of normal ${}^{1}C_{4}$ conformation. In some cases, the formation of the β -isomer exceeded the formation of the α -isomer.

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan (No. 10780359).

References and Notes

- M. Nishizawa, H. Imagawa, E. Morikuni, S. Hatakeyama, and H. Yamada, *Chem. Pharm. Bull.*, 42, 1365 (1994); T. Hosoya, E. Takashiro, T. Matsumoto, and K. Suzuki, *Tetrahedron Lett.*, 35, 4591 (1994); M. Nishizawa, D. M. García, and H. Yamada, *Synlett*, 1992, 797; G. H. Veeneman, L. J. F. Gomes, and J. H. van Boom, *Tetrahedron*, 45, 7433 (1989); P. Fügedi, A. Lipták, and P. Nánási, *Carbohydr. Res.*, 107, C5 (1982).
- 2 H. Yamada, M. Nakatani, T. Ikeda, and Y. Marumoto, *Tetrahedron Lett.*, **40**, 5573 (1999).
- 3 In this paper, the following abbreviations are used; DAST: (diethylamino)sulfur trifluoride, TBS: *tert*-butyldimethyl-silyl, TPS: *tert*-butyldiphenylsilyl. Others complied with a standard list of abbreviations on *J. Org. Chem.*, **64**, 21A (1999).
- 4 Equatorial selective *C*-glycosylation reactions have been observed using 'flipped' sugars. T. Hosoya, Y. Ohashi, T. Matsumoto, and K. Suzuki, *Tetrahedron Lett.*, **37**, 663 (1996); S. Manabe and Y. Ito, *J. Am. Chem. Soc.*, **121**, 9754 (1999).
- 5 S. Hanessian and Y. Guindon, *Carbohydr. Res.*, **86**, C3 (1980).
- 6 K. C. Nicolaou, S. P. Seitz, and D. P. Papahatjis, J. Am. Chem. Soc., 105, 2430 (1983).
- 7 G. Wulff and G. Rohle, *Angew. Chem., Int. Ed. Engl.*, **13**, 157 (1974).
- 8 R. R. Schmidt, M. Behrendt, and A. Toepfer, *Synlett*, **1990**, 694; Y. D. Vankar, P. S. Vankar, M. Behrendt, and R. R. Schmidt, *Tetrahedron*, **47**, 9985 (1991).
- 9 Because we could not find the exactly same reaction conditions in the literature, reactions with phenyl 1-thio-2,3,4,6tetra-*O*-benzyl- α -D-glucoside (**11**) were also investigated. When **11** was treated with cyclohexylmethanol under the same conditions with the reactions of **2**, the α/β ratios of the resulting glucoside were 80:20 in CH₂Cl₂ (75% yield), 84:16 in Et₂O (61% yield), and 15:85 in CH₃CN (83% yield).
- K. C. Nicolaou, R. E. Dolle, D. P. Papahatjis, and J. L. Randall, *J. Am. Chem. Soc.*, **106**, 4189 (1984); W. Rosenbrook Jr, D. A. Riley, and P. A. Lartey, *Tetrahedron Lett.*, **26**, 3 (1985).
- 11 T. Mukaiyama, Y. Murai, and S. Shoda, *Chem. Lett.*, **1981**, 431.
- 12 ¹H NMR coupling constants between neighboring protons are following. The value (Hz) was shown in order of H1-H2, H2-H3, H3-H4, and H4-H5 in parenthesis. **2**: (9.2, 2.8, 2.8, and 2.8), 4α : (6.8, 2.4, 2.4, and 2.4), 4β : (3.7, 3.4, 4.4, and 2.2), 5α : (6.8, 2.4, 2.4, and 4.4), 5β : (3.4, 3.4, 4.4, and 2.4), 6α : (6.9, 2.7, 2.4, and 3.3), 6β : (3.6, 3.0, 2.4, and 5.4), **10** α : (6.0, 2.0, 2.0, and 5.6), **10** β : (3.7, 3.2, 4.0, and 4.8).